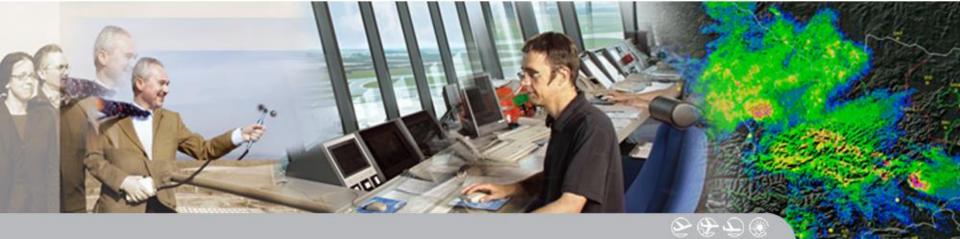


austro

Learnings from ATM-KPIs -**MET-potentials for arrival- and departure management**


MET4LOWW Workshop 11 April 2018, Vienna International Airport, Austria

Christian Kern, Martin Steinheimer Carlos Gonzaga-Lopez, Markus Kerschbaum, Johannes Sachsperger, Lukas Strauss

Kurt Eschbacher, Martin Mayr, Carl-Herbert Rokitansky, Fritz Zobl UNIVERSITÄT SALZBURG

SICHERHEIT LIEGT IN DER LUFT

Outline

Impact Analysis

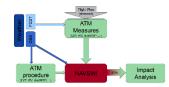
- The Motivation
 - Why are we doing it...
- The Method
 - How are we doing it...
- The Tool
 - What do we use to do it...
- Case Studies
 - What we do in action...

Measure

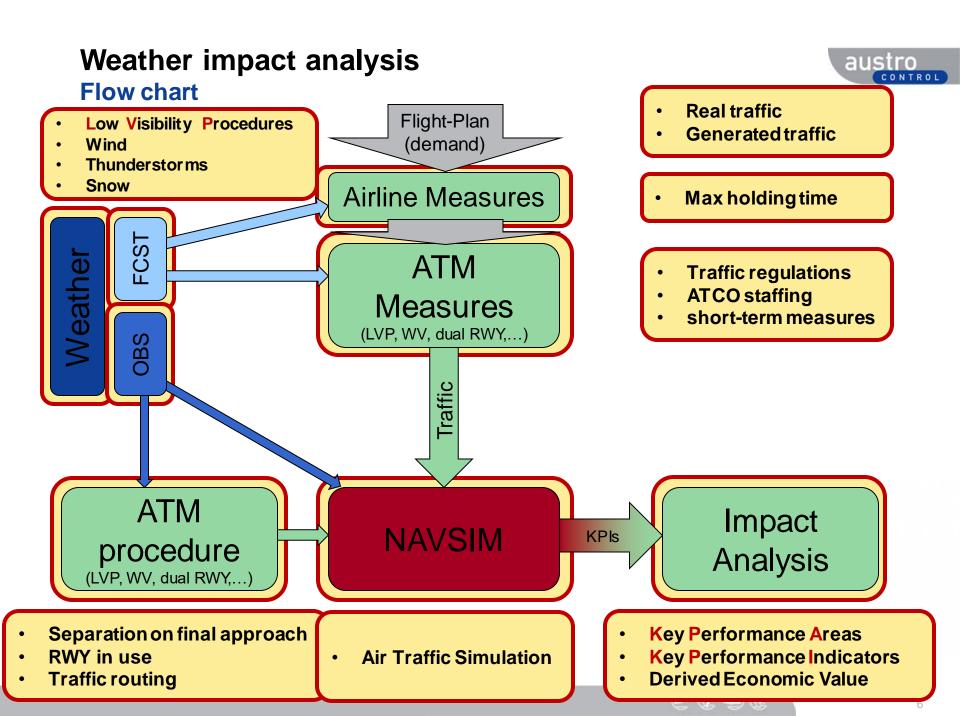
The way forward How to use the results...

The Motivation

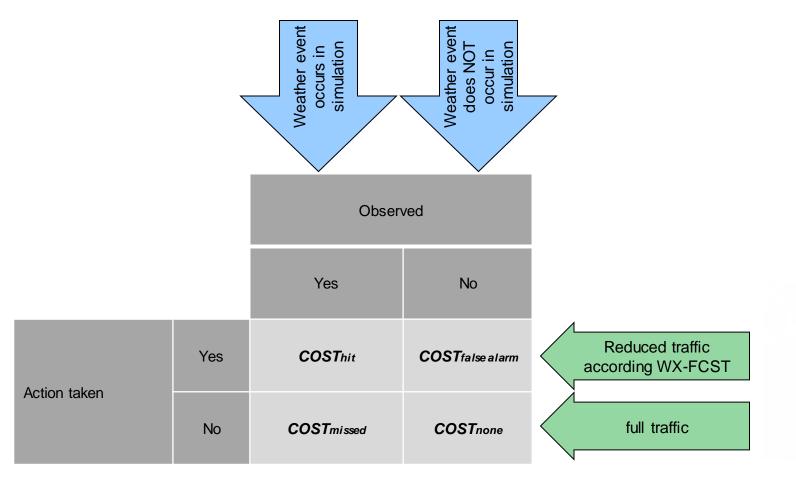
Weather impact on Air Traffic Management


- Weather especially wind, thunderstorms and low visibility have big impact on airport capacity
- Weather cannot be changed but accurate forecasts help to be prepared and to minimize weather impact
- Project objective: Quantify weather impact to identify mitigation potentials
- Weather impact in numbers:
 - Vienna International airport:

Delays LOWW ARR Oct. 2015 - Mar. 2016							
	minutes	min/flight	percentage				
Weather	66 214	0,59	89%				
Total	74 121	0,66					



The Method

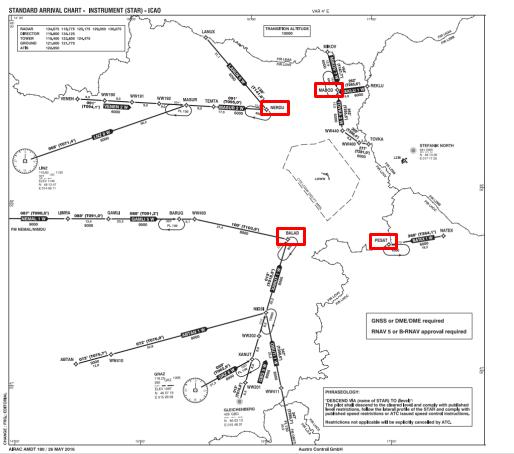


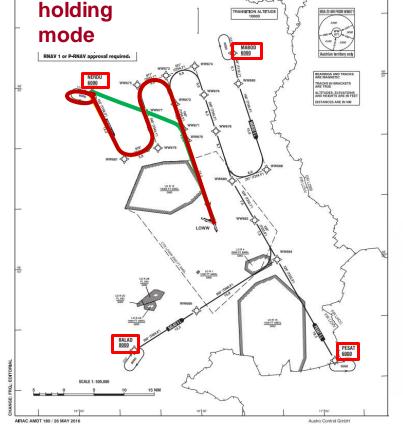
Weather impact analysis Methodology

Cost matrix based on air traffic simulations

Weather impact analysis Challenges

- Not everything can be readily measured in terms of money, e.g.:
 - ATM workload
 - safety
- Optimization criteria are contradictory, e.g.:
 - trade-off between maximizing capacity and optimizing workload
 - trade-off between optimizing workload and minimizing flight delays
 - etc...
- Different stakeholders (ANSP, airlines, airports,...) prioritize optimization criteria differently
 - e.g. ATM workload is not airlines' first priority
- To quantify the impact on the overall air traffic management system all stakeholders' requirements must be considered and balanced

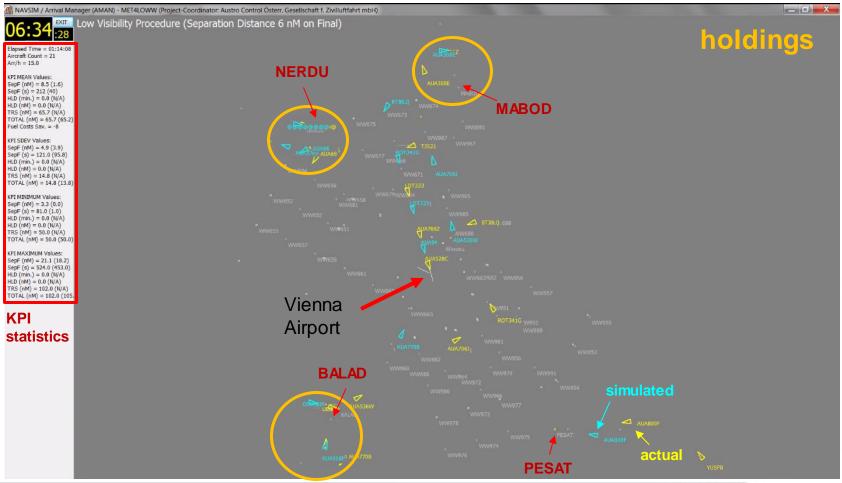

The Tool



NAVSIM / AMAN Air traffic simulation

- Detailed simulation of arrival procedures
 - Simulation is initialized with traffic at STAR endpoints
 - Weather (wind, LVP, TS) is realistically considered
 - Detailed performance analysis based on various KPIs

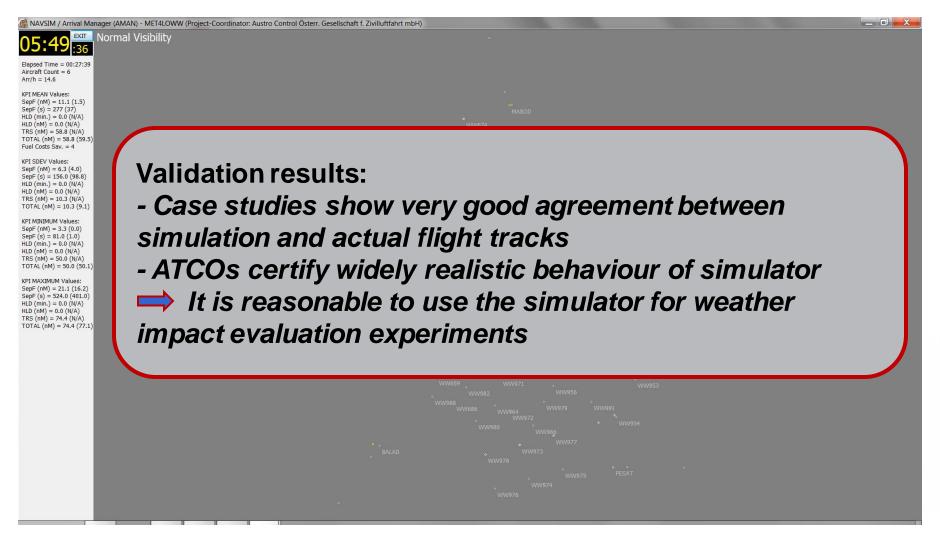
ARRIVAL CHART TRANSITION TO FINAL APCH RWY 16



UNIVERSITÄT

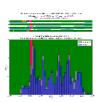
NAVSIM / AMAN Validation

- Compare actual flight path to simulated flight path
 - Simulation is initialized with actual traffic at STAR endpoints
 - Compare simulation and actual flight paths between STAR endpoints and touchdown



yellow: CPR; blue: simulated

NAVSIM / AMAN Validation - video

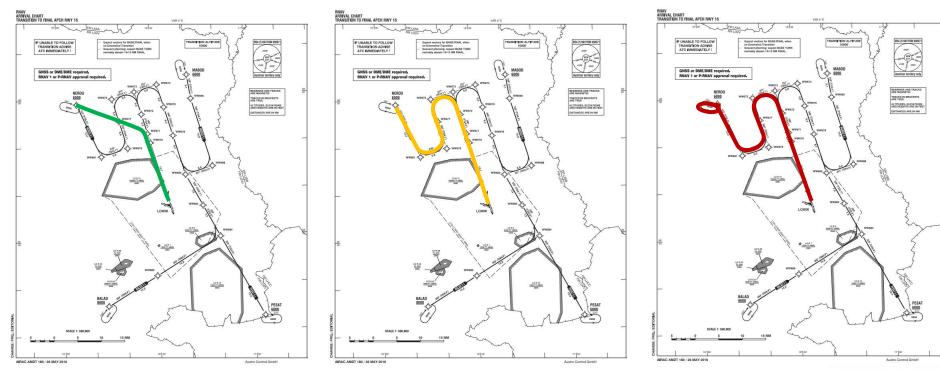

Low Visibility Procedures (LVP) during morning rush hour

Case Studies

KPIs explained

Short introduction to Key Performance Indicators used for impact evaluation

"Trackmiles" explained

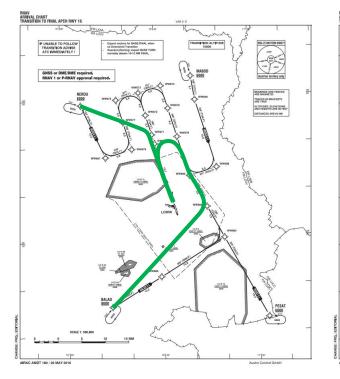


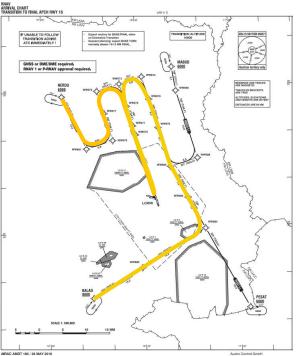
Flown distance from entry into APP sector until touchdown

direct mode

transition mode

holding mode

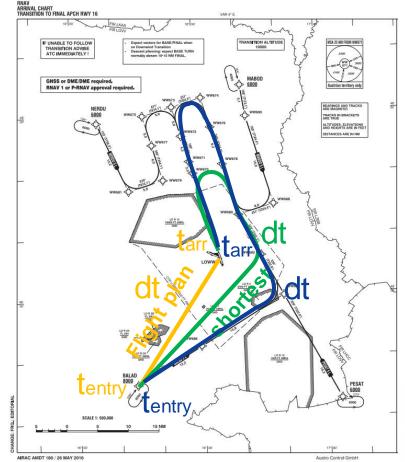



"Lateral efficiency" explained

 Excess distance an aircraft flies in arrival phase compared to ideal case

> Lateral efficiency = Flown distance Ideal distance

ideal distance



Flown distance

"Arrival delay" vs. "Regulated delay" explained

- "Regulated delay"
 - Delay on ground at origin due to traffic regulation (ATFM delay) tentry = tentry + RegDelay
- "Arrival delay"
 - Delay airborne in arrival sector due to holding or longer transition ArrDelay = dt – dt
 - Arrival delay always bigger than 0 because dt is constant (not RWY specific; no wind)
 - In evaluation arrival delay relative to base scenario

"Cost of delay" and "Cost of diversion" explained

Cost of Delay

A. Cook, G. Tanner, *European airline delay cost reference values, updated and extended values*. Version 4.1, https://www.eurocontrol.int/publications/european-airline-delay-cost-reference-values (2015).

Regulated delay cost

_	Arrival	delay	cost

Delay (mins)	5	15	30	60	90	120	180	240	300	-	
B733	70	430	1 550	7 020	19 160	36 220	49 040	66 480	89 310	-	
B734	80	480	1 740	7 930	21 690	40 960	55 340	74 780	100 040		
B735	70	390	1 400	6 280	17 110	32 350	43 900	59 720	80 590		
B738	90	540	1 940	8 860	24 270	45 750	61 740	83 220	110 920		
B752	100	620	2 290	10 620	29 250	55 150	74 240	99 700	132 200		
B763	170			Table 2	9. ARRI	VAL MGT	/ BASE	/ full tac	tical cost	s	
B744	240						-	-			
A319	70	Delay	5	15	30	60	90	120	180	240	300
A320	80	(mins)									
A321	100	B733	210	850	2 400	8 710	21 690	39 580	54 090	73 210	97 720
AT43	30	B734	250	980	2 730	9 910	24 670	44 930	61 300	82 730	109 970
AT72	40	B735	180	740	2 090	7 680	19 200	35 140	48 090	65 310	87 580
DH8D	40	B738	250	1 020	2 910	10 790	27 160	49 610	67 530	90 940	120 570
E190	60	B752	290	1 180	3 420	12 880	32 640	59 670	81 010	108 730	143 480
A332	180	B763	480	1 830	5 070	18 510	45 560	92 770	133 090	167 800	210 660
		B744	710	2 760	7 780	29 000	72 060	147 460	211 020	264 690	330 020
		A319	220	890	2 510	9 130	22 760	41 470	56 660	76 660	102 220
		A320	250	1 000	2 820	10 370	25 940	47 270	64 460	86 940	115 440
		A321	280	1 130	3 260	12 210	30 880	56 400	76 670	103 060	136 260
		AT43	70	290	830	3 030	7 590	14 130	19 830	28 060	39 730
		AT72	90	370	1 090	4 130	10 490	19 490	26 980	37 480	51 870
		DH8D	110	450	1 280	4 690	11 720	21 570	29 840	41 270	56 710
		E190	180	690	1 880	6 600	16 150	29 350	40 430	55 240	74 620
		A332	470	1 840	5 250	19 880	49 730	102 150	146 340	184 100	230 690

Cost of diversion

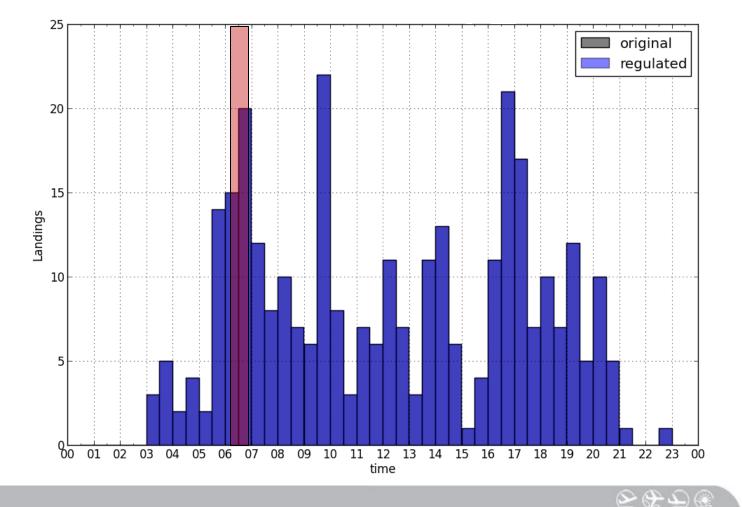
Standard Inputs for EUROCONTROL Cost-Benefit Analyses. Edition Number: 8.0. Edition Date: January 2018

Type of flight	Cost of flight diverted (€)
Regional flights	830 – 5 900
Continental flights	1 180 – 8 900
Intercontinental flights	5 900 – 65 000

Other KPIs

- Mean spacing at touchdown
 - Mean of distance to leader at leader touch-down
- Number of diverts
 - Number of flights diverted, because holding time exceedes max.
 holding time (default = 20 minutes)
- Ground speed variance
 - Variance of ground speed from all aircraft positions in time range
- Traffic variability
 - Peak traffic (flights airborne) and average traffic (flights airborne) during the simulation
- ATCO command/phrases
 - Evaluate commands/phrases related to traffic and derive frequency occupation from it

RWY - closure

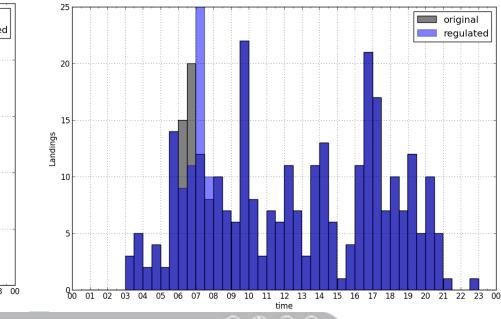


RWY - closure

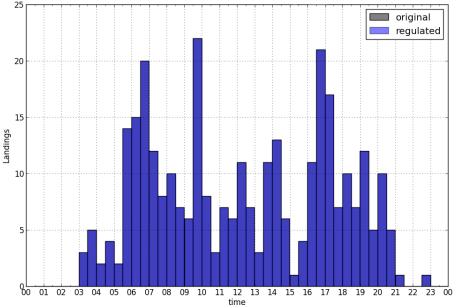
 Arrival runway is closed for 45 minutes during morning peak (synthetic example)

Case study Runway closure – synthetic example

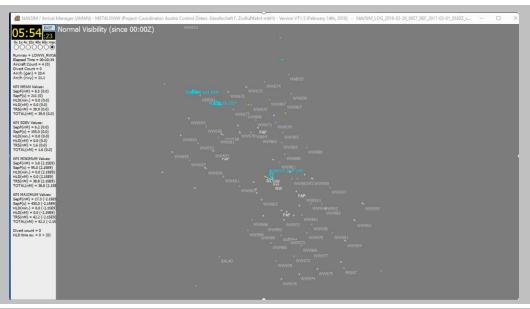
Cost matrix scenarios were simulated:


		Observed			
		Yes	No		
	Yes	hit: RWY closure and forecasted	false alarm: No RWY closure, but forecasted		
Action taken	No	<i>miss:</i> RWY closure, but not forecasted	none: No RWY closure and none forecasted		

Case study Runway closure – synthetic example

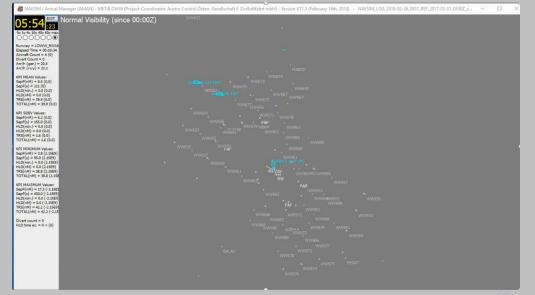


- No action taken
 - No traffic regulation applied
 - Average possible maximum holding time: 20 minutes
- Action taken
 - Traffic regulated
 - Regulation issued at 05:00: 06:10 to 06:55: acceptance rate 0
 - Average possible maximum holding time: 30 minutes


Simplified as sumptions:

- in m case regulation w ould be applied once event happens
- in f case regulation w ould be cancelled once event does not happen

Simulation RWY closure well forecasted



RWY closure well forecasted

- Extra fuel reserve less diverts
- Traffic regulation

RWY closure not forecasted

- Normal fuel reserve more diverts
- No traffic regulation longer holding time

Case study Runway closure – synthetic example

KPIs:		none	false alarm	miss	hit
2.5 hours	Diversions	0	0	15	3
75 flights	Trackmiles / flight [NM]	64.3	70.8	67.8	84.5
	Holding time [min]	46	71	239	291
	Holding time / flight [min]	0.62	0.95	3.19	3.89
	Regulated delay [min]	0	823	0	823
	Regulated delay / flight [min]	0	11	0	11
	Regulated delay cost [€]	0	19,710	0	19,710
	ARR delay cost [€]	0	1,630	10,090	20,060
	Diversion cost [€]	0	0	124,500	23,700
	Total cost [€]	0	21,340	134,590	63,470
	Total cost / flight [€]	0	285	1,795	846

- Cost estimates based on:
 - Delay costs:

A. Cook, G. Tanner, *European airline delay cost reference values, updated and extended values*. Version 4.1, https://www.eurocontrol.int/publications/european-airline-delay-cost-reference-values (2015).

- Diversions:

Standard Inputs for EUROCONTROL Cost-Benefit Analyses. Edition Number: 8.0. Edition Date: January 2018

Case study Runway closure – synthetic example

- How do results relate to weather forecasts?
 - Cost / Loss ratio can be derived from cost matrix important when using probability forecasts
 - Together with contingency table of specific forecast the forecast value can be derived
- Other insights from this analysis method
 - Impact of different actions can be evaluated
 - Decision processes and weather forecasts can be aligned

Cost matrix:

		Observed			
		Yes	No		
Action tokon	Yes	63,470 €	21,340 €		
Action taken	No	134,590 €	0€		

Cost / Loss ratio in this example: 0.23

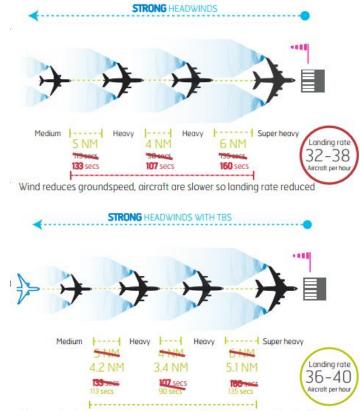
 Obs-red

 Yes
 No

 Yes
 *h*it
 *f*alse alarm

 No
 *m*issed
 Correct *n*egative

 0 = h + m
 1 - 0


Forecast contingency table:

Time Based Separation

The concept

Wake vortices dissipate guicker so separation distance can be reduced safely.

Diagram from NATS leaflet at

http://www.nats.aero/wp-content/uploads/2014/12/TBS-Crew-Fact-Sheet1.pdf

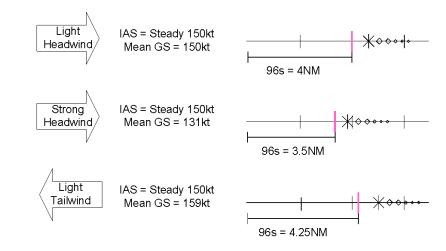
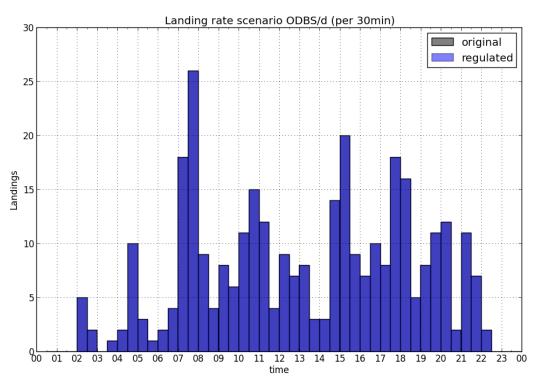


Figure 3: Variation of the Distance Separation of the TBS with Headwind Conditions

Mean Headwind	Time Spacing Impact
15kts	6.7 %
25kts	14.3 %
35kts	23.1 %

Table 7: Time Spacing Impact of Headwind Conditions


SESAR 06.08.01 D05 - Operational Service and Environment Definition (OSED) for Time Based Separation for Arrivals (TBS)

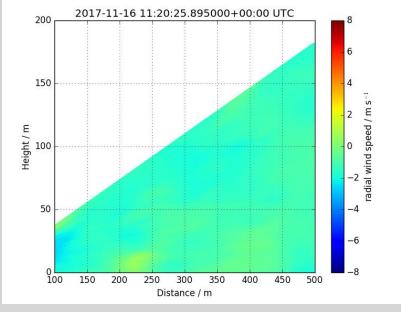
Case study Distance Based (DBS) vs. Time Based (TBS) Separation

Head wind speed [kt] time series:

height	06:00	07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00
0 ft	11	11	12	14	16	11	8	12	14	12	8	5	5	7	5	7	7
300 ft	15	15	16	18	21	15	12	16	18	16	11	8	8	10	9	11	11
700 ft	19	19	19	22	25	18	15	19	21	18	13	11	10	12	12	14	12
1000 ft	22	22	22	24	27	21	18	21	22	20	15	14	12	14	15	16	13
1300 ft	26	25	25	27	30	25	20	23	23	21	16	16	14	14	18	18	15
1600 ft	28	27	29	31	33	29	23	25	24	22	18	18	16	15	20	20	16
2000 ft	27	27	32	34	36	32	26	26	25	23	20	20	18	16	21	22	19
2300 ft	25	24	34	37	39	36	30	28	26	24	22	21	20	17	22	24	20
2600 ft	22	21	33	34	40	37	34	28	27	25	24	23	20	17	22	26	20
3000 ft	21	20	29	29	40	39	35	29	29	27	26	24	20	18	22	26	20

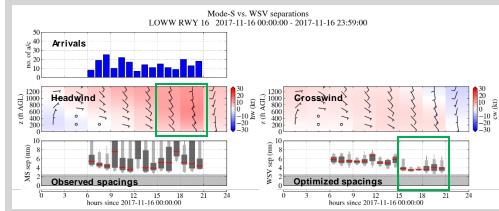
Case study Distance Based (DBS) vs. Time Based (TBS) Separation

Wind conditions:


RWY headwind: ~ 15kt 600ft headwind: ~ 25kt

KPIs:		DBS	TBS	DBS no wind
16 hours	Trackmiles / flight	63.7	58.0	60.2
305 flights	Holding time [min]	205	52	105
	Holding time / flight [min]	0.68	0.17	0.34
	ARR delay [min]	625	186	0
	ARR delay / flight [min]	2.0	0.6	0
	ARR delay cost [€]	44,330	13,480	0
	ARR delay cost / flight [€]	145.3	44.2	0
	Mean spacing at touchdown [NM]	4.1	3.9	4.3
	Lateral efficiency[]	1.197	1.070	1.117

Wake Vortex Separation


- Wake Vortex separation is an important constraint for TBS procedures
- Pairwise weather dependent separation can be used to optimize separation/RWY throughput
- WV measurements for SESAR2020 Plate Lines project
- A380 wake measured by DLR-LIDAR

Animation starts at 11:20:25

- DLR WSBVS* Wake Vortex Prediction System
- separation calculation for individual aircraft pairings (leader + follower) based on atmospheric conditions

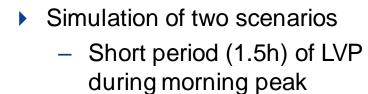
16 November 2017 Arrivals at Vienna Airport, RWY 16

As the wind strengthens, the separation distance can be reduced ...

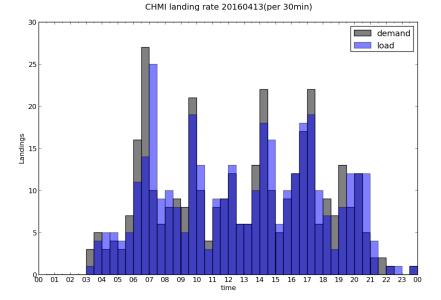
* WSBVS: Wirbelschleppen Beobachtungs- und Vorhersagesystem

Low visibility Procedures

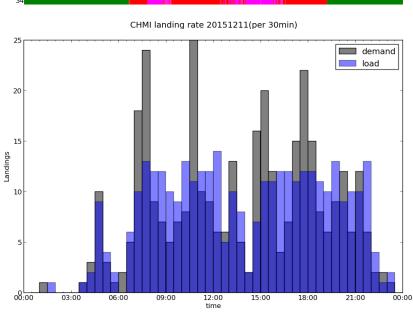
What are Low Visibility Procedures

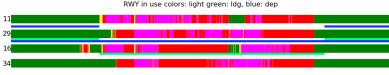

LVP state	RVR	Ceiling	Spacing	Capacity
normal			2.5NM	>40
LVP	< 600m	BKN < 200ft	4NM	25
LVP CATIII	< 350m		6NM	18

LVP seen from the cockpit: <u>https://www.youtube.com/watch?v=mSNE3SmYA-8</u>


~44.000 delay minutes at LOWW in 2017 because of LVP

Case studies Low Visibility Procedures




LVP status derived from MET state (METREPORT + RVR) + RWY in use LVP colors: vellow: LVP STDBY, red: LVP, magenta: LVP CAT3 RWY in use colors: light green: ldg, blue: dep

 Long period (13h) of LVP during daytime

LVP status derived from MET state (METREPORT + RVR) + RWY in use

LVP colors: vellow: LVP STDBY, red: LVP, magenta: LVP CAT3

Case studies Low Visibility Procedures

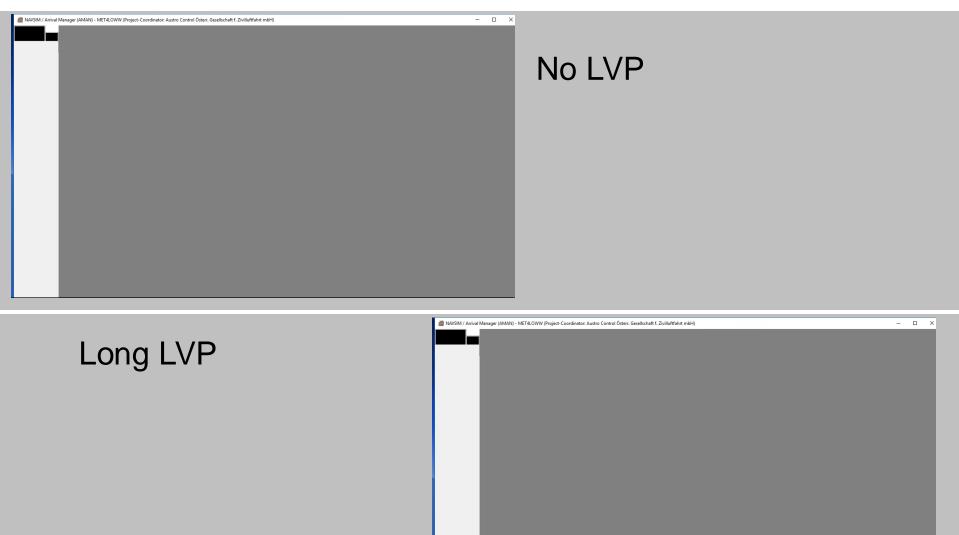
For both scenarios the cost matrix scenarios were simulated :

		Observed						
		Yes	No					
Tala asting	Yes	<i>hit:</i> LVP observed and forecasted. Traffic regulated according forecast.	<i>false alarm:</i> No LVP observed, but forecasted. Traffic regulated according forecast.					
Take action	No	<i>miss:</i> LVP observed, but not forecasted. Traffic is regulated once LVP observed.	<i>none:</i> No LVP observed and none forecast. No traffic regulation (i.e. full traffic).					

Case studies Low Visibility Procedures - KPIs

Short event:

1.5 hours103 flights

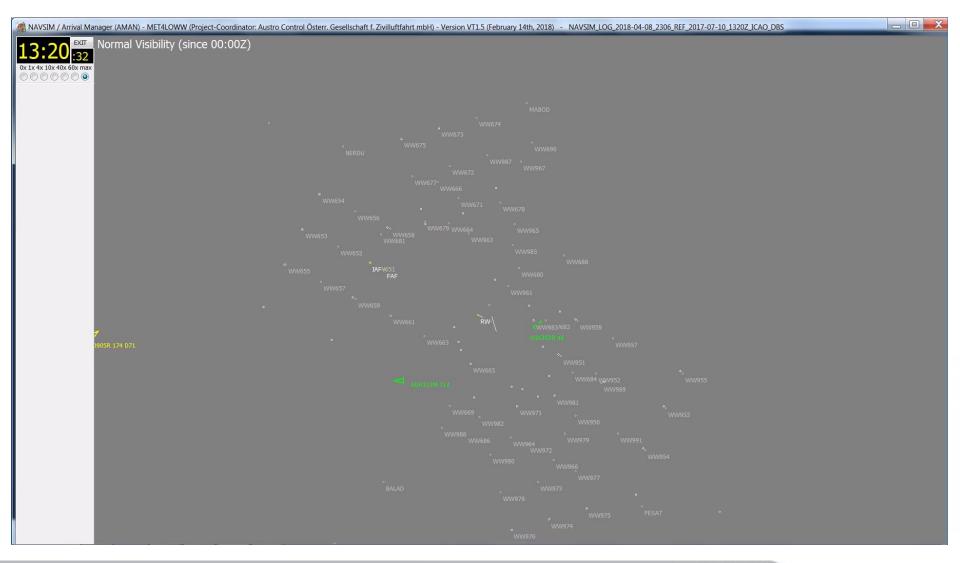

Long event: 13 hours 314 flights

	none	false alarm	miss	hit
Diversions	0	0	0	0
Trackmiles / flight [NM]	64.8	61.7	66.8	63.0
Holding time [min]	54	33	77	37
Regulated delay [min]	0	175	215	276
Regulated delay cost [€]	0	1,010	3,790	2,940
ARR delay cost [€]	0	-6,130	-270	-4,510
Diversion cost [€]	0	0	0	0
Total cost [€]	0	-5,120	3520	-1,570
Total cost / flight [€]	0	-50	34	-15
	none	false alarm	miss	hit
Diversions	0	0	4	0
Trackmiles / flight [NM]	68.9	65.1	72.7	69
Holding time [min]	294	92	457	184
Regulated delay [min]	0	899	3744	6395
Regulated delay cost [€]	0	9,570	163,900	208,0100
ARR delay cost [€]	0	-19,420	15,340	-220
Diversion cost [€]	0	0	35,600	0
Total cost [€]	0	-9,850	214,840	207,790
	0	-31	684	662

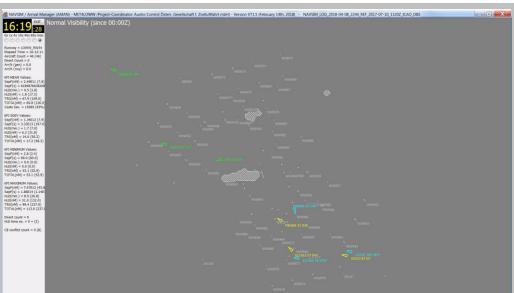
Simulation LVP observed vs. not observed

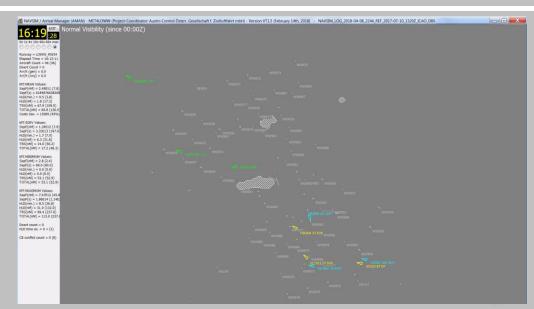


Thunderstorms


10.7.2017 an exceptional event at LOWW (3485 delay minutes; 8 diverts)
 52.000 delay minutes at LOWW in 2017 because of thunderstarms

~52.000 delay minutes at LOWW in 2017 because of thunderstorms


Simulation Thunderstorm – CPR vs. simulation


Identified potential Better recovery after thunderstorm at airport

- Recovery in simulation as in reality
- No landings between 16:28 and 17:10

- Earlier recovery in simulation than in reality
- No landings between 16:28 and 16:41

Case study Recovery potential in numbers

Flights entering sector between 16:00 and 17:30

	Optimal recovery	Recovery as OBS (20 min max HLD-Time)	Recovery as OBS (50 min max HLD-Time)
Flights	23	23	23
Diversions	0	3	0
Trackmiles / flight [NM]	69.3	115.0	157.5
Lateral efficiency	1.28	2.46	2.99
Holding time [min]	0	189	370
Holding time / flight [min]	0	8.22	16.11
ARR delay cost [€]	0	9,980	21,890
Diversion cost [€]	0	26,700	0
Total excess cost [€]	0	36,680	21,890

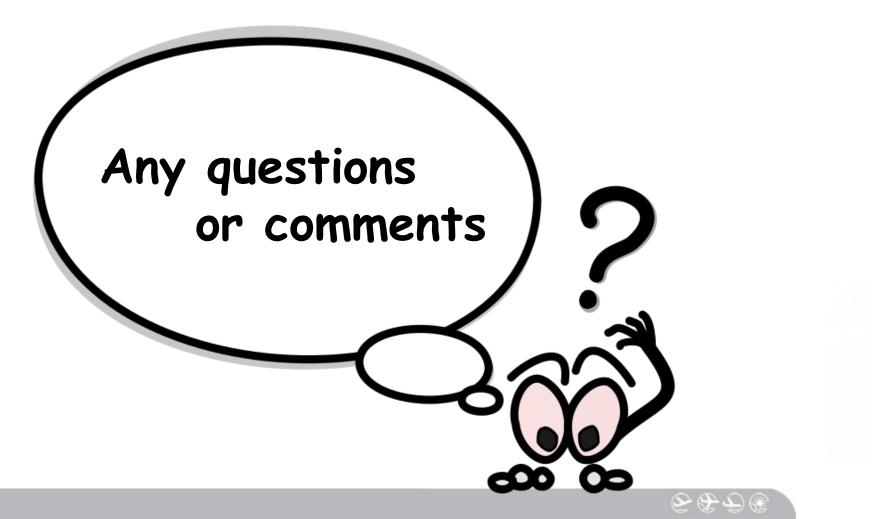
The way forward

Summary Main learnings

- The applied method using the air traffic simulator is suitable to quantitatively evaluate impact of weather and weather forecasts on the ATM system
- An integrated holistic view involving all stakeholders is key to identify improvement potentials
- Improved awareness and mutual understanding between ATM and MET
 - ATM processes, needs and scope of action
 - Capabilities and limits of weather predictability
- Insight into airline and airport impacts important for further understanding and quantification

The way forward How to use the results...

- Results evaluation
 - Improved weather products targeting the potentials
 - Review ATM decision making based on results / weather products
 - Discuss impact and ATM-measures with stakeholders based on project results
- A follow up project proposal was submitted
 - Includes flight planning expertise to refine cost estimates
 - Focus on how probability forecasts can be integrated in ATM decision making
 - Evaluate what ATM decisions can be improved by probability forecasts
 - Evaluate available probabilistic weather forecast systems
 - Holistic view on the ATM-System (Airlines + Airport + ATC)



Funded by

TAKE OFF is an initiative of the Federal Ministry of Transport, Innovation and Technology (BMVIT) and is managed by the FFG

